終 端 速 度

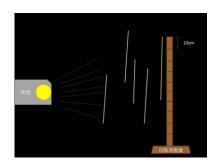
壹、研究動機:

雲、霧漂浮於空中,而雨卻快速落下,之間的差異值得探討。

貳、研究目的:

利用大小不同的球型保麗龍,由高處自由落下,測出其終端速度,再進而討論出終端速度 與球的直徑、球的密度之關係。

參、研究器材及設備:


- 一、單眼數位相機
- 二、一公尺長木尺(每 10 公分為一單位)。(如下圖)
- 三、1.1 公尺長的紙尺(每 10 公分為一單位)
- 四、電子秤
- 五、游標尺
- 六、30 公分的鋼尺(mm)
- 七、大小不同直徑的保麗龍球(7種)(見下表)

<表(一)>

號碼	1	2	3	4	5	6	7
質量 (g)	31.86	10.04	5.19	2.89	1.445	0.342	0.111
直徑 (cm)	14.69	9.96	7.65	5.70	4.89	2.83	1.82
體積 (cm³)	1659.83	517.34	234.41	96.97	61.22	11.87	3.16
密度 (g/cm³)	0.0192	0.0194	0.0221	0.0298	0.0236	0.0288	0.0352

肆、研究步驟

- 一、雨滴的終端速度測量:
 - (一) 把自製的長度測量尺放置於大雨中。
 - (二) 利用汽車車燈照明可明顯看到雨滴落下的線條。
 - (三) 在自製的長度測量尺旁放置預定的快門,如(30、40、60)等三角紙牌。
 - **(四)** 配合快門牌的數字,調整單眼相機的快門與紙牌一致後,按下快門拍攝雨滴落下的路徑。
 - (五) 依快門 1/30 秒、1/40 秒、1/60 秒重覆拍攝數張。
 - (六) 比對照片中雨滴的路徑長與長度測量尺的刻度,即可測出在該快門之下的雨滴 瞬時速率。

- 二、大小不同半徑的保麗龍球終端速度之測量:
 - (一)在大禮堂內,利用高約9公尺的佈置台為投射點。
 - (二)背景看板上張貼紅色布或色紙,並且貼上每 10 公分為一單位的紙尺 1.2 公尺長, 作為測量長度的對照。
 - (三)單眼相機快門調為 1/15 秒時,把 1 號保麗龍球到 7 號保麗龍球,分別讓其自由落下。當球落在有紅色背景之看板前時,迅速按下快門拍攝之。
 - (四)單眼相機快門調為 1/8 秒時,重複 3 之步驟。
 - (五)在照片中由保麗龍球在紅色背景中拉出的白色路徑長配合快門時間,即可求出其 終端速度。

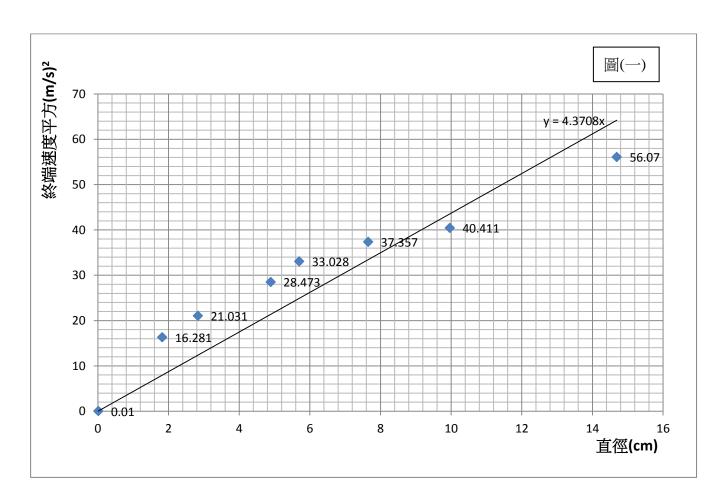
伍、研究結果:

(一)雨滴終端速度之測量值

<表(二)>

密度 (g/cm³)	快門 (秒)	螢幕上 測量距離 (cm)	螢幕上 測量距離 平均 (cm)	實際落下 距離平均值 (cm)	終端速度 (m/s)	終端速度 平均值 (m/s)	
		9.09					
1.0	1/60	8.14	8.45	10.7	6.404	6.308	
		8.13					
	1/40	12.72		16.1	6.429		
1.0		11.83	12.04				
		11.56					
	1/30	14.08					
1.0		12.79	13.11	20.3	6.090		
		12.46					

(二)保麗龍球之終端速度測量值

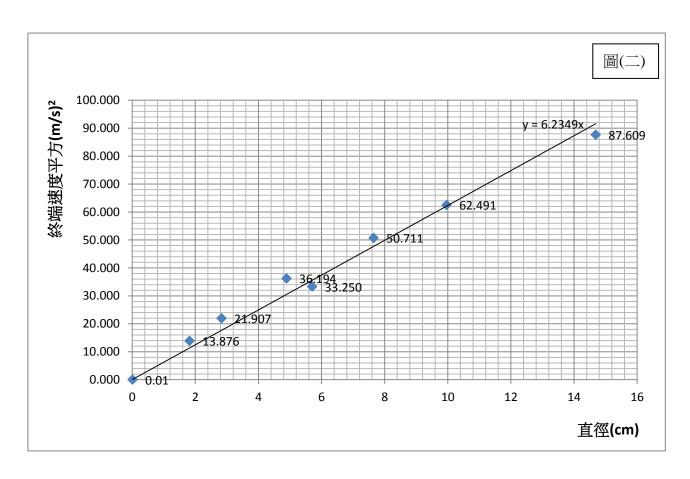

<表(三)>

球編號	重量 (g)	直徑(mm)	密度 (g/cm³)	快門 (秒)	螢幕上 測量距離 (cm)	登幕上測 量距離平 均值(cm)	實際落下 距離平均 值(cm)	終端速度 (m/s)	
				1/15	4.35		47.17	7.070	
					4.25	4.33			
					4.40				
1	31.86	14.69	0.0192	1/8	8.55		93.61		
					8.60	8.60		7.488	
					8.65				
					3.85				
				1/15	3.80	3.80	41.36	6.200	
2	10.04	0.00	0.0104		3.75				
2	10.04	9.96	0.0194	1/8	7.25	7.30	79.46	6.357	
					7.30				
					7.35				
		7.65	0.0221	1/15	3.78	3.79	41.29		
					3.75			6.193	
3	5.19				3.85				
5	5.19	7.05		1/8	7.00	7.02	76.41	6.112	
					7.05				
					7.00				
		39 5.7	0.0298	1/15	3.45				
					3.50	3.52	38.28	5.740	
4	2.89				3.60				
4	2.03		0.0298		6.55		71.84	5.747	
				1/8	6.60	6.60			
					6.65				
					3.15				
				1/15	3.00	3.07	33.38	5.010	
5	1.445	4.89	0.0236		3.05				
3 .	±	7.03	0.0236		6.15		66.72		
				1/8	6.10	6.13		5.336	
					6.15				
		42 2.83	0.0288		2.75				
6 0.34	0.342			1/15	2.5	2.60	28.30	4.240	
					2.55				

					5.25			
6 0	0.342	2.83	0.0288	1/8	5.25	5.27	57.32	4.586
					5.30			
			0.0352	1/15	2.25	2.25	24.49	3.670
		1.82			2.15			
7	0.111				2.35			
′	0.111	1.02		1/8	4.55			
					4.65	4.63	50.43	4.035
					4.70			

<表(四)>

號碼	1	2	3	4	5	6	7
直徑(cm)	14.69	9.96	7.65	5.70	4.89	2.83	1.82
平均速度(m/s)	7.488	6.357	6.112	5.747	5.336	4.586	4.035
速度平方(m/s) ²	56.070	40.411	37.357	33.028	28.473	21.031	16.281


(三)假設終端速度之平方和密度成正比時,保麗龍球之密度皆為 0.030 g/ml。此時終端速度見下表

<表(五)>

								\1\(\1\)/	
	號碼	1	2	3	4	5	6	7	
а	直徑(cm)	14.69	9.96	7.65	5.7	4.89	2.83	1.82	
b	密度 (g/cm3)	0.0192	0.0194	0.0221	0.0298	0.0236	0.0288	0.0352	
С	速度平方 (m/s)2	56.070	40.411	37.357	33.028	28.473	21.031	16.281	
d	速度平方 (m/s) ² (密度變為	87.609	62.491	50.711	33.250	36.194	21.907	13.876	

公式:
$$d = \frac{0.030}{b} \times c$$

0.030 g/ml)

陸、討論:

- 一、由表(二) 將快門 1/30.1/40.1/60 秒的雨滴照片在螢幕上測得的落下長度換算成實際落下的距離。
 - (一) 快門 1/30 秒, 螢幕上測的 6.5 公分為實際的 10 公分

$$\frac{10}{6.5} = \frac{x}{13.11}$$
 x=20.3cm 20.3cm $\div \frac{1}{30}$ =6.090m/s

(二) 快門 1/40 秒, 螢幕上測的 7.5 公分為實際的 10 公分

$$\frac{10}{7.5} = \frac{X}{12.04}$$
 $x = 16.1$ cm 16.1 cm $\div \frac{1}{40}$ $t = 6.429$ m/s

(三) 快門 1/60 秒, 螢幕上測的 7.5 公分為實際的 10 公分

$$\frac{10}{7.9} = \frac{x}{8.45}$$
 x=10.7cm 10.7cm $\div \frac{1}{60}$ =6.404m/s

二、由表(三)將 1-7 號保麗龍球在螢幕上測得的落下長度換算成實際落下的距離。 (以 1/8 秒為例)(在螢幕上測的 7.35 公分為實際的 80 公分)

(一) 一號球

$$\frac{80}{7.35} = \frac{x}{8.60}$$
 $x = 93.61$ cm 93.6 cm $\div \frac{1}{8}$ $t = 7.49$ m/s

(二) 二號球

$$\frac{80}{7.35} = \frac{x}{7.30}$$
 $x = 79.46$ cm 85.5 cm $\div \frac{1}{8}$ $t = 6.36$ m/s

(三) 三號球

$$\frac{80}{7.35} = \frac{x}{7.02}$$
 $x = 76.41$ cm 76.4 cm $\div \frac{1}{8}$ $t = 6.11$ m/s

(四) 四號球

$$\frac{80}{7.35} = \frac{x}{6.60}$$
 $x = 71.84$ cm 75.5 cm $\div \frac{1}{8}$ $t = 5.75$ m/s

(五) 五號球

$$\frac{80}{7.35} = \frac{x}{6.13}$$
 $x = 66.72$ cm 66.7 cm $\div \frac{1}{8}$ $t = 5.34$ m/s

(六) 六號球

$$\frac{80}{7.35} = \frac{x}{5.27}$$
 $x = 57.32$ cm 52.2 cm $\div \frac{1}{8}$ $t = 4.59$ m/s

(七) 七號球

$$\frac{80}{7.35} = \frac{x}{4.63}$$
 $x = 50.43$ cm 50.4 cm $\div \frac{1}{8}$ $t = 4.03$ m/s

- 四、由表(五)得知因保麗龍球之密度並非相同,嘗試把保麗龍球之密度調為相同時,對相同密度的大小不同半徑的保麗龍球,做出其終端速度平方(Vt²) ≪直徑(R)得到圖(二),可看出為正比關係,可見終端速度平方正比於密度的假設是正確的。
- 五、 我們得到 $Vt^2 \propto \rho s \cdot d$ (Vt 為終端速度, ρs :球體密度, d:球體直徑)
- 六、 我們經由夜間拍攝可求出下雨時終端速度約為 6.3m/秒。
- 七、 由證明出的 $Vt^2 \propto Ps \cdot d$ 可以求出當保麗龍球(密度 $0.030g/cm^3$)的直徑為 0.457cm 時之終端速度為 1.688m/s。 (已知 1ml 之水有 20 滴水滴可算出每滴水之直徑為 0.457cm)
- 八、 因為 $Vt^2 \propto \rho s \cdot d$ 我們可求出雨滴(直徑為 0.457cm 時)之終端速度為 9.7m/s。
- 九、 我們同時可由夜間拍攝實驗測出的雨滴終端速度 6.3m/s 推測其直徑為 0.192cm。 計算過程:

$$(9.7)^2 = k*0.457\cdots$$
 $(6.3)^2 = k*X\cdots$

$$\pm 12 \rightarrow \frac{0.457}{X} = \left(\frac{9.7}{6.3}\right)^2$$
 x=0.192cm

十、 由雨滴的落下速度-Biglobe 查知,雨滴直徑 0.16cm 時,終端速度為 6.08m/s;

雨滴直徑 0.20cm 時,終端速度為 6.80m/s;

雨滴直徑 0.40cm 時,終端速度為 9.62m/s。

這些資料和我們的實驗計算值吻合,再度證明我們的實驗完美,且 $Vt^2 \propto \rho_s \cdot d$ 的結論正確。

- 十一、我們也可算出當水球直徑為 1μ m 時,其終端速度為 14.3 cm/s;當直徑為 0.1μ m 時,其終端速度為 4.5 cm/s,就是霧的現象。 (霧為膠體溶液,其直徑在 1-1000 nm 之間) (高中化學)
- 十二、假設石頭密度約為 3.0 g/cm³,我們算出當直徑為 10cm 之石頭終端速度為 78.9m/s。
- 十三、隕石成分約為 80%鐵的和 20%石頭,密度約為 6.84(g/cm³),藉由本方程式可推知 直徑 10cm 的隕石掉落時其終端速度約為 119.2m/s。
- 十四、我們計算出雨滴直徑為 0.457cm 時之終端速度為 9.7m/s,可以推算出 75kg 重之水 球之終端速度為 73.5m/s,也可以推算出 75kg 重(密度為 1.07g/cm³)之人球之終端 速度為 76.0m/s。
- 十五、由網路上知道 75kg 重的人不開傘的蛙式跳傘終端速度為 55m/s, 75kg 重的人不開傘的曲身跳傘終端速度為 90m/s 這也和我們算出的人球終端速度為 75.6m/s 很接近。

十六、 由網路查出終端速度公式為:
$$V_t = \sqrt{\frac{4gd}{3C_d}\left(\frac{\rho_s - \rho}{\rho}\right)}$$

(Vt=終端速度 g=重力加速度,d=球體直徑,Cd=阻力係數, ρ s=球體密度, ρ =流體密度)

柒、結論:

- 一、 Vt^2 ∝ $Ps \cdot d$ (Vt:終端速度, ρs : 球體密度, d:球體直徑)
- 二、簡單的夜間拍攝實驗即可求出當時雨滴之終端速度為約為 6.3m/s,且計算出當時雨滴的直徑為 0.192cm。
- 三、我們也可算出當水球直徑為 1μ m 時,其終端速度為 14.3 cm/s;當直徑為 0.1μ m 時,其終端速度為 4.5 cm/s,就是霧的現象。 (霧為膠體溶液,其直徑在 1-1000 nm 之間) (高中化學)
- 四、假設石頭密度約為 3.0 g/cm³, 則直徑為 10cm 之石頭終端速度為 78.9m/s。
- 五、隕石成分約為 80%鐵的和 20%石頭,密度約為 6.84(g/cm³),藉由本方程式可推知直徑 10cm 的隕石掉落時其終端速度約為 119.2m/s。

捌、參考資料來源:

- 一、 南一書局 國民中學 自然與生活科技 (三上) 1-5 自由落體
- □ http://zh.wikipedia.org/wiki/%E7%B5%82%E7%AB%AF%E9%80%9F%E5%BA%A6
- = http://www5b.biglobe.ne.jp/~saturn/meteology/04.htm
- 四、 高中選修化學(上) 南一書局