中華民國第52屆中小學科學展覽會作品說明書

科 别:物理科

組 别:國小組

作品名稱:「聲」意盎然

編 號:

摘要

研究吸管材質、吸管口徑大小、吸管長度、吸管填塞物等因素對自製排笛聲音高低的影響。

壹、研究動機

上音樂課時,老師介紹了不少樂器給我們認識,同時也放了不少由各種樂器演奏的音樂讓我們欣賞,其中我最感興趣的是排笛演奏出的美妙樂音,記得前一陣子在上自然課時曾教到有關聲音的原理,於是我們就想自己動手做個排笛試試看!

貳、研究目的

- 一、認識排笛的構造及發聲原理。
- 二、比較各種材質空管製作的難易程度。
- 三、比較空管長短對聲音高低的影響。
- 四、比較空管口徑大小對聲音高低的影響。
- 五、比較不同材質對聲音高低的影響。
- 六、了解空管口徑大小及空管長短的發聲限制。

參、研究設備器材

原子筆管、水管、鋁管、玻璃試管、尺、電鋸、鋼琴、棉花、水、沙子、衛生紙、筆、筆記本、透明膠帶、黏土

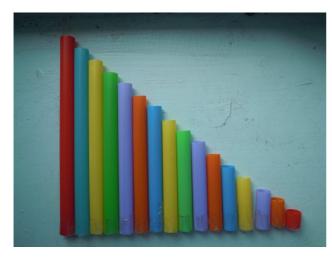
肆、研究過程或方式

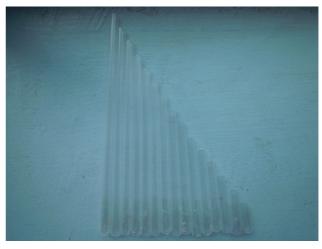
- 一、查出排笛發聲之原理。
- 二、決定做排笛之空管的材質。
- 三、裁出長短不同之空管。
- 四、比對鋼琴的音高,記錄各個空管的音高。
- 五、將所記錄各空管之音高以數值方式顯示。
- 六、畫出各材質空管之長度與音值關係圖。
- 七、根據記錄資料,整理、歸納出影響聲音高低之原因。
- 八、為了將記錄之音高以數值方式顯示,我們鋼琴琴鍵上「中央 C」為基準音, 設其數值為「0」,將各個音高與基準音的位值以數值方式表示,往右加半 音則數值「加1」,往左減半音則數值「減1」,茲將音高與數值之關係列表 如下:

音階	-1	-1	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
音高	G [#]	A	A [#]	В	С	C [#]	D	D#	Е	F	F#	G	G [#]	A	A [#]	В
音值	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10	11

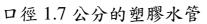
音階	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2
音高	С	C #	D	$\mathbf{D}^{\#}$	Е	F	$F^{\#}$	G	$G^{\#}$	A	A [#]	В	C	C [#]	D	$\mathbf{D}^{\#}$
音值	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27

☆ 裁剪吸管材質的空管





☆ 利用剪刀及電鋸裁出各種不同長度的空管



口徑 1.1 公分的大吸管

口徑 0.5 公分的小吸管

口徑 0.9 公分的鋁管

口徑 0.7 公分的原子筆管

☆ 練習吹奏空管

☆ 吹奏空管,請音樂老師利用鋼琴來判讀空管的音值

伍、研究結果

一、排笛發聲構造、原理

排笛是由一系列不同長短的空管連接在一起,由口吹氣引起空管中的空氣柱振動發聲和空氣柱共鳴的原理製成的。

- 二、選擇不同的材料,做成各材質之空管
- 1、製作過程之難易程度(由易→難,分別填入數字1→5),結果如下表

材質	玻璃	塑膠水管	原子筆管	鋁管	吸管
製作難易度	5	3	2	4	1

在切割、製做時,我們發現吸管最容易裁切,原子筆管及塑膠水管用鋸子就可以裁切,而鋁管則要請鐵工廠的師傅幫忙,玻璃管最難裁切。所以最後我們討論決定,以玻璃試管來代替,在玻璃試管的底部填充物品,以調整試管中空氣柱的長短。

2、在調整玻璃試管中的空氣柱長短時,我們嘗用棉花、沙子、衛生紙、水,結果如下表:

填充物	乾棉花	溼棉花	乾沙子	溼沙子	乾衛生紙	溼衛生紙	水
可否吹奏		T 33		- - - - - - - - - -	·	1	T.,,
出聲音	不可以	可以	不可以	可以	不可以	可以	可以

在運用上述各物品來調整玻璃試管時,我們發現用乾棉花、乾沙子、乾衛生紙等物品時,因物品中存有空隙,所以玻璃試管不易吹奏,但將這些物品滴上一些水後,就很容易吹奏出聲音了。而用水不但可以吹奏出聲音,而且用水可以方便調整試管中空氣柱的長短,所以我們決定採用以水來調整玻璃試管中空氣柱長短的方法。

3、當我們嘗試將吸管、水管及鋁管底部封口時,原先是以黏土做為封口材料, 但發現這樣很難控製空管的長度,因此我們決定以在空管底部貼上透明膠帶 的方法,來進行這次的實驗。

4、實驗統計表(以下長度、口徑單位皆為公分)

(1) 玻璃試管

①口徑 1.4 公分

長度	5	6	7	8	9	10	11	12	13	14	15	16	17	18
音階	1	1	1	0	0	0	0	0	0	0				
音高	$F^{\#}$	$D^{\#}$	C [#]	В	A	$G^{\#}$	$F^{\#}$	Е	$D^{\#}$	D				
音值	18	15	13	11	9	8	6	4	3	2				

②口徑 1.5 公分

長度	5	6	7	8	9	10	11	12	13	14	15	16	17	18
音階	1	1	1	0	0	0	0	0	0	0	0	0		
音高	F	$D^{\#}$	C [#]	В	A	G	$F^{\#}$	Е	$D^{\#}$	D	C [#]	С		
音值	17	15	13	11	9	7	6	4	3	2	1	0		

③口徑 1.8 公分

長度	5	6	7	8	9	10	11	12	13	14	15	16	17	18
音階	1	1	1	0	0	0	0	0	0	0	0	0	-1	-1
音高	F	D	$C^{\#}$	В	A	G	$F^{\#}$	Е	$D^{\#}$	D	$C^{\#}$	C	В	$\mathbf{B}^{\mathbf{b}}$
音值	17	14	13	11	9	7	6	4	3	2	1	0	-1	-2

(2) 塑膠水管(口徑1.7公分)

長度	3.5	4.5	5.3	7	9	11.2	13	15	18	19.7
音階	-	-	1	1	0	0	0	0	-1	-1
音高	-	-	$F^{\#}$	С	$G^{\#}$	F	$D^{\#}$	C [#]	$A^{\#}$	$G^{\#}$
音值	-	-	17	13	8	5	3	1	-2	-4

(3) 原子筆管(口徑 0.7 公分)

長度	3	3.9	4	4.8	5.5	6	7
音階	2	1	1	1	1	1	1
音高	D	В	A	$G^{\#}$	G	Е	$\mathbf{C}^{\#}$
音值	27	23	21	20	19	16	13

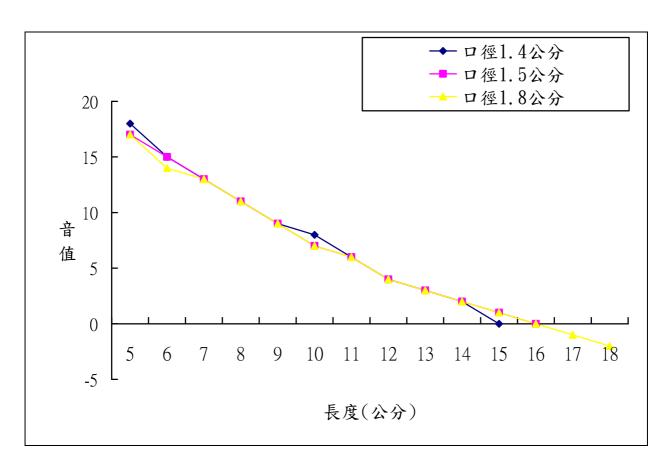
(4) 鋁管 (口徑 0.9 公分)

長度	7	7.8	8.6	9.6	10.9	12.5	13.5
音階	1	0	0	0	0	0	0
音高	С	В	A	G	$F^{\#}$	$D^{\#}$	D
音值	12	11	9	7	6	3	2

(5) 吸管

①口徑 0.5 公分

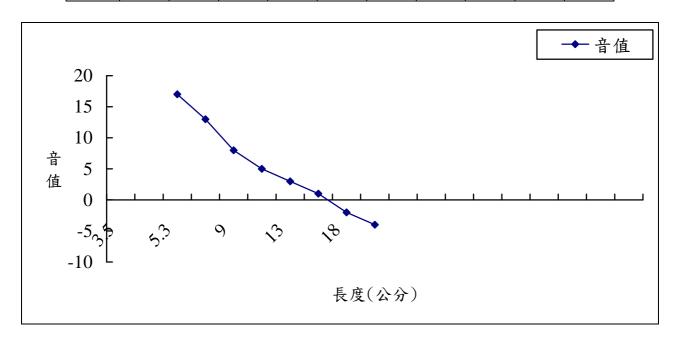
長度	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
音階	-	-	2	1	1	1	1	0	0	0	0	0	0	0	0	0
音高	-	-	С	$G^{\#}$	F	$D^{\#}$	С	В	A	G	$F^{\#}$	F	$D^{\#}$	D	$\mathbf{C}^{\#}$	C
音值	-	-	24	20	17	15	12	11	9	7	6	5	3	2	1	0


②口徑 1.1 公分

長度	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
音階	1	-	2	1	1	1	0	0	0	0	0	0	0	0	0	0
音高	1	-	A	G	$F^{\#}$	$D^{\#}$	$\mathbf{C}^{\#}$	В	$A^{\#}$	$G^{\#}$	$F^{\#}$	F	Е	D	$\mathbf{C}^{\#}$	C
音值	ı	ı	21	19	18	15	13	11	10	8	6	5	4	2	1	0

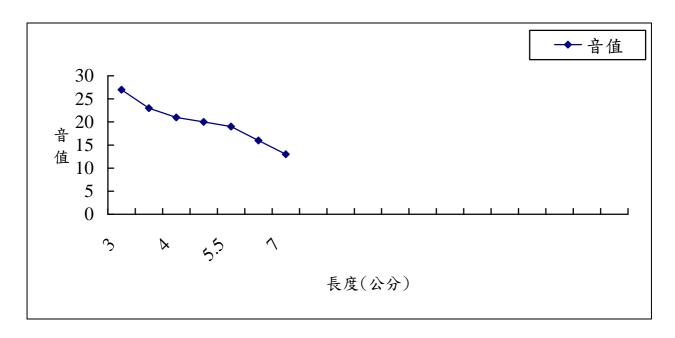
5、各材質空管之長度與音值關係圖表

(1)玻璃試管長度與音值之關係圖表


長度音值	5	6	7	8	9	10	11	12	13	14	15	16	17	18
口徑 1.4 公分	18	15	13	11	9	8	6	4	3	2	0	-	-	-
口徑 1.5 公分	17	15	13	11	9	7	6	4	3	2	1	0	-	-
口徑 1.8 公分	17	14	13	11	9	7	6	4	3	2	1	0	-1	-2

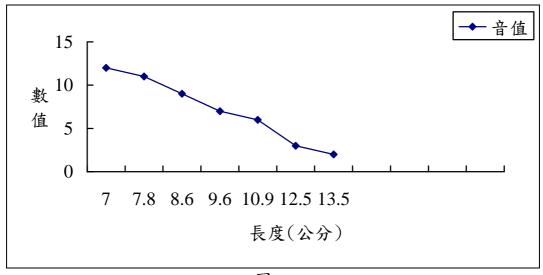
圖一

(2)塑膠水管長度與音值之關係圖表


長度	3.5	4.5	5.3	7	9	11.2	13	15	18	19.7
音值	-	-	17	13	8	5	3	1	-2	-4

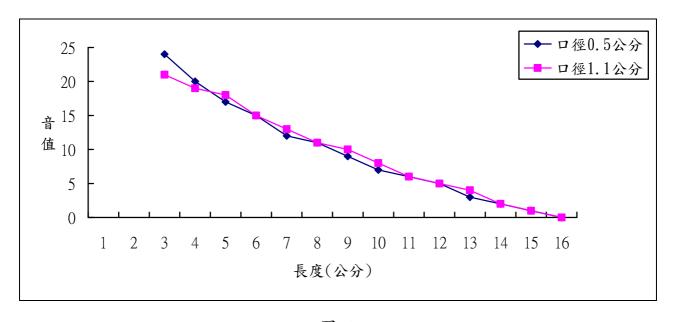
圖二

(3)原子筆管長度與音值之關係圖表


長度	3	3.9	4	4.8	5.5	6	7
音值	27	23	21	20	19	16	13

圖三

(4)鋁管長度與音值之關係圖表


長度	7	7.8	8.6	9.6	10.9	12.5	13.5
音值	12	11	9	7	6	3	2

圖四

(5)吸管長度與音值之關係圖表

長度音值	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
口徑 0.5 公分	-	-	24	20	17	15	12	11	9	7	6	5	3	2	1	0
口徑 1.1 公分	-	-	21	19	18	15	13	11	10	8	6	5	4	2	1	0

圖五

根據上述圖表,我們發現:

- ①在圖表一和圖表五中,只要玻璃試管及吸管中的空氣柱長短相同時,不論 其口徑大小差異如何,它們吹奏出的音高是幾乎一樣的。
- ②在圖表一至圖表五中,空管的長度和奏出的音值(音高)成反比。當空管 愈長時,它的聲音音值愈低(聲音愈低);空管愈短時,它所吹奏出的聲 音音值愈高(聲音愈高)。

(6)選擇各種材質、不同口徑大小、同長度之空管比較(口徑及長度單位:公分)

11 6	玻璃	玻璃	玻璃	塑膠	原子	加丝	吸管	四签
材質	試管	試管	試管	水管	筆管	鋁管	汉官	吸管
口徑	1.4	1.5	1.8	1.7	0.7	0.9	0.5	1.1
長度	7	7	7	7	7	7	7	7
音值	13	13	13	13	13	12	12	13

根據上表,我們發現:

- ①同材質的空管,雖然口徑大小不同,但只要長度一樣時,它們吹奏出聲音 音高幾乎是相同。
- ② 不同材質、不同口徑大小的空管,如果長度相同時,它們吹奏出的聲音音高也是幾乎相同的。

陸、討論

- 一、不論任何材質做成的空管,吹奏時,聲音的高低主要是受空管的長度影響。空管愈長時,管中的空氣柱愈長,吹奏出的聲音愈低;反之,空管愈短時,管中的空氣柱愈短,吹奏時聲音振動的頻率愈高,吹出的聲音也愈高。
- 二、相同長度的空度,不論口徑大小、材質的異同,吹奏出的聲音音高是相 同的。所以,我們認為材質的差異、空管口徑的大小對聲音之高低沒什 麼影響。
- 三、在吹奏時,空管的口徑大小與長度是需要相互配合的,口徑大的空管, 其長度不可以太短,不然會很難吹。相對的,口徑小的空管,其長度太 長的話,也會不容易吹奏的。
- 四、在實驗中,我們發現有的同學很容易就可以吹奏出聲音,有的人卻怎麼 也吹不起來,我們認為可能跟吹奏的角度與吹出的氣量大小有關。

柒、結論

在這次的實驗中,因為空管的切割與磨製不容易,所以在空管長度的計量上可能會有些微的誤差;再加上空管音高的判定,我們是根據鋼琴的音準,請音樂老師以人為的判斷來決定空管的音高,所以實驗的結果可能會有些許的誤差。

而在我們的實驗中,因為吸管是比較好裁切的,所以可以製作各種不同

長度的空管;而其他材質的空管因裁切不易,所以製成的空管數量也較少。再者,我們在實驗中採用的只有玻璃試管、塑膠水管、原子筆管、鋁管及吸管等材質,如果能更廣範的運用各種材質的空管來做實驗,相信實驗結果將更具準確性。

此外,我們也發現吹奏的角度對聲音的產生也有影響,這也可以做為往後的研究參考。

捌、參考資料及其他

- 1. 蕭啟專、方君文(民 88)。音樂欣賞。文京圖書。
- 2. 五下自然科教科書南一版(民 100)。第四單元 聲音的探討。南一。
- 3.Nathalie Decorde。孟筱敏譯。(民 86)。人類文明小百科 樂器篇。三民書局 4.畢毓俊(民 89)。自然科學例解。五南。